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Abstract Domination theory is required for encryption of binary string into a DNA
sequence. A dominating set of a graph G = (V, E) is a subset D of V such that every
vertex not in D is adjacent to at least one vertex in D. The bondage number b(G) of
a nonempty graph G is the minimum number of edges whose removal from G results
in a graph with larger domination number than γ (G). In this paper we determine the
domination number and the bondage number for pyrene torus, Balaban 10-cage and
hexabenzocoronene using H -packing. Further we compute the domination number of
non-isomorphic graphs with same number of vertices namely H-phenylenic nanotube
and H-napthelenic nanotube.

Keywords Pyrene torus · H -packing · Perfect packing · Domination number ·
Bondage number · Balaban 10-cage · H -phenylenic nanotube · H -napthelenic
nanotube · Hexabenzocoronene

AMS Classification 05C69

1 Introduction and preliminaries

Domination in graph theory is a natural model for many location problems in operations
research. It has many other applications in dominating queens problem, school bus
routing problem, computer communication network problems, social network theory,
land surveying and kernels of games [9,10]. Among them, the classical problems
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Fig. 1 γ (P(8, 1)) = 4 and b(G) = 2

of covering chessboards by the minimum number of chess pieces are important in
stimulating the study of domination, which commenced in the early 1970s.

Chemical structures are conveniently represented by graphs, where atoms corre-
spond to vertices and chemical bonds correspond to edges. This representation inherits
many useful information about chemical properties of molecules. It has been shown
in QSAR and QSPR studies that many physical and chemical properties of mole-
cules are well correlated with graph theoretical invariants that are termed topological
indices or molecular descriptors. One of such graph theoretical invariants is domina-
tion number [16]. Domination theory is required for encryption of binary string into a
DNA sequence. The methods like, basic method and insertion method encrypting any
chemical formula using graph domination as the tool for encryptionn. Every chemical
formula is converted into a binary string using graph domination and later encrypted
using DNA steganography [22].

A set D of vertices in a graph G is said to be a dominating set if every vertex in
V − D is adjacent to some vertex in D. The domination number γ (G) of a graph
G is the minimum size of a dominating set of G. In Fig. 1, the dominating set of
peterson graph is {a, c, e, g, i, l, p} but the minimum dominating set is {a, e, l, p}
and can be {b, f, m, i}. In 1990, Fink et al. [7] introduced the bondage number as a
parameter for measuring the vulnerability of an interconnection network under link
failure. The bondage number b(G) of a nonempty graph G is the minimum number of
edges whose removal from G results in a graph with larger domination number than
γ (G). If b(G) does not exist, for example empty graphs, we define b(G) = ∞. They
also established the bondage number of cycles, paths, complete graphs and complete
multipartite graphs and showed that b(T ) ≤ 2 for any tree T . In [8], Hartnell et al.
and Wang [21] gave an improved upper bound of the bondage number. The problem
of determining bondage number for general graphs is NP-hard [15]. In Fig. 1, the
bondage set is {(a, j), (b, k), (b, c)} but the minimum bondage set is {(a, j), (b, k)}
and the bondage number is 2.

Molecules arranging themselves into predictable patterns on silicon chips could
lead to microprocessors with much smaller circuit elements [19]. Mathematically,
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assembling in predictable patterns is equivalent to packing in graphs. An H -packing
of a graph G is a set of vertex disjoint subgraphs of G, each of which is isomorphic to
a fixed graph H . From the optimization point of view, maximum H -packing problem
is to find the maximum number of vertex disjoint copies of H in G called the packing
number denoted by λ(G, H). For our convenience λ(G, H) is sometimes represented
as λ.

An H -packing in G is called perfect if it covers all vertices of G. If H is the
complete graph K2, the maximum H -packing problem becomes the familiar maxi-
mum matching problem. Structures realized by arrangements of regular hexagons in
the plane are of interest in the chemistry of benzenoid hydrocarbons, where perfect
matchings correspond to kekule structures and feature in the calculation of molecular
energies associated with benzenoid hydrocarbon molecules. H -Packing, is of practical
interest in the areas of scheduling, wireless sensor tracking, wiring-board design, code
optimization and many others [19].

An F-packing is a natural generalization of H -packing concept. For a given family
F of graphs, the problem is to identify a set of vertex-disjoint subgraphs of G, each
isomorphic to a member of F . The F-packing problem is to find an F-packing in a
graph G that covers the maximum number of vertices of G. When H is a connected
graph with at least three vertices, Kirkpatrick and Hell proved that the maximum H -
packing problem is N P-complete [11]. Packing lines in a hypercube has been studied
in [6]. Identification of Bay Regions, enumeration of perfect matchings, Computer
Generation of King and Color Polynomials of Graphs and Lattices, dimer statistics on
graphs are highlighted by Balasubramanian et al. [3,4,13,20]. Clar’s aromatic sextets
and the associated sextet polynomials in the context of chemical graph theory are
highlighted by Hosoya [12]. Algorithms are available for dense packing of trees of
different sizes [23] and packing almost stars into the complete graph [5].

The rest of the paper is organized as follows. In Sect. 2, we compute bondage number
of pyrene network. In Sect. 3, we discuss packing of certain chemical structures. In
Sect. 4, we determine the domination number of non-isomorphic chemical graphs.
Finally, concluding remarks and future work are given in Sect. 5.

2 Bondage number of pyrene network

The series of hypothetical benzenoid torus networks are derived by properly joining
all the distant pairs of peripheral carbon atoms of 2-dimensional polycyclic aromatic
hydrocarbons, namely coronene, pyrene and hexabenzocoronene [14]. This has vast
applications in the field of chemistry.

Pyrene is an alternante polycyclic aromatic hydrocarbon (PAH) and consists of
four fused benzene rings, resulting in a large flat aromatic system. It is a colorless or
pale yellow solid which forms during incomplete combustion of organic materials and
therefore can be isolated from coal tar together with a broad range of related com-
pounds. In the last four decades, a number of research works have been reported on
both the theoretical and experimental investigation of pyrene concerning its electronic
structure, UV–vis absorption and fluorescence emission spectrum. Indeed, this poly-
cyclic aromatic hydrocarbon exhibits a set of many interesting electrochemical and
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Fig. 2 a Pyrene network PY (4), b pyrene torus network PT (4)

photophysical attributes, which have results in its utilization in a variety of scientific
areas. Like most PAHs, pyrene is used to make dyes, plastics and pesticides.

In order to study packing in pyrene networks, it is necessary to investigate its
topological properties. Hence we introduce the axes for the pyrene network as follows:
Let the centre line perpendicular to the vertical edge direction of hexagon of PY (n)

and PT (n) be denoted by α0 as shown in Fig. 2a. The lines which are parallel and in
the anticlockwise direction of α0 are denoted by αi , 1 ≤ i ≤ (n − 1) and those in the
clockwise direction of α0 are denoted by α−i , 1 ≤ i ≤ (n − 1). Let the outer cycle
of PY (n) be denoted by C0

n . Let the topmost and bottommost vertices in PY (n) and
PT (n) be denoted by a and b.

As given in [17] any zigzag line not containing vertical edges is called a zigzag
horizontal line. The zigzag horizontal lines of PT (n) are denoted by L j , 1 ≤ j ≤ 2n.
See Fig. 2b. The number of vertices and edges of PT (n) are 2n2 + 4n and 3n2 + 6n
respectively.

Definition 2.1 The subgraph induced by L j and L j+1 in PT (n) is called a ′zigzag
horizontal channel ′ and is denoted by Z ZC( j) for j = 1, 3, 5, . . . , 2n − 1.

Theorem 2.2 [19] Let G be a graph and H be a subgraph of G. Then λ(G, H) ≤
� |V (G)|

|V (H)| �.

Definition 2.3 [19] Given a vertex x in a hexagon, the unique vertex y at distance 3
from it is called the diagonally opposite vertex of x .

By definition of dominating set the proof of the following result is obvious.

Lemma 2.4 Let S be a dominating set with the property that if every vertex a ∈ V (G)

is dominated by exactly one vertex of S, then S is a minimum dominating set.
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Theorem 2.5 In a graph G, if there exists a perfect H-packing when H ∼= K1,�(G),
then γ (G) = λ, where �(G) and λ are the maximum degree and the packing number
of G respectively.

Proof It is clear that γ (K1,�(G)) = 1. In a perfect H -packing when H ∼= K1,�(G), all
the vertices are dominated by exactly one vertex. Hence, it is obvious that the packing
number and the domination number of G are same. In other words γ (G) = λ. 	

Theorem 2.6 Let G be a pyrene network of dimension n. Then

γ (G) =
{

( 2n2+4n
4 ) + 1, i f n is even

� 2n2+4n
4 �, i f n is odd

Proof Start at a vertex a as shown in Fig. 3b and call it saturated.

Case (i) (n is odd)

Saturate a sequence of diagonally opposite vertices of hexagons beginning with
vertex a and proceed till vertex b is reached.

Case (ii) (n is even)

The α0-line divides PY (n) into two subgraphs H1 and H2 which are mirror images
of each other along α0. See Fig. 3a. Saturate the vertices as in Case (i) till α−1-line
is reached. Next saturate a vertex b in H2 which is the mirror image of a. Saturate a
sequence of diagonally opposite vertices of hexagons beginning with vertex b. Proceed
till α−1-line is reached.

By Lemma 2.4, since all the vertices on graph are dominated exactly once, the
saturated vertices form a minimum dominating set. Therefore, γ (G) = ( 2n2+4n

4 ) + 1,

if n is even and γ (G) = � 2n2+4n
4 �, if n is odd. 	


Theorem 2.7 If G is a pyrene network, then b(G) = 1.

Proof Clearly all the saturated vertices form a minimum dominating set of G by
Theorem 2.6. Removal of an edge which is adjacent to saturated vertices, increases
the domination number to ( 2n2+4n

4 ) + 2 if n is even and � 2n2+4n
4 � + 1 if n is odd. 	


3 Packing of certain chemical structures

In this section, we compute packing of certain chemical structures, such as, pyrene
torus, hexabenzocoronene sheet, hexabenzocoronene torus and Balaban 10-cage net-
work.

3.1 Packing of pyrene torus PT (n) with K1,3

Theorem 3.1 If G is a pyrene torus and H ∼= K1,3, then λ = � 2n2+4n
4 �, where λ is

the packing number of G.
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Fig. 3 a Pyrene network PY (4), b pyrene network PY (5)

Proof Start at a vertex a as shown in Fig. 4b and call it saturated.

Case (i) (n is odd)

Saturate a sequence of diagonally opposite vertices of hexagons beginning with
vertex a till a diagonally opposite vertex of b is reached.

Case (ii) (n is even)

Saturate the vertices as in Theorem 2.6 of the subgraph H ∼= PY (n − 2) obtained
by deleting the boundary vertices and the diagonally opposite vertices of a and b in
PY (n). Draw the vertical line β0 through the vertices a and b as shown in Fig. 4a.
The β0 line divides PT (n) into two subgraphs H1 and H2 which are mirror images of
each other along β0. Let the boundary line of H1 and H2 be C1 and C2 respectively.
Label C1 as follows: Begin with vertex u at distance 3 from b as in Fig. 4a and call it
saturated. Traversing in the anticlockwise sense, choose the next vertex v at distance
4 from the saturated vertex and saturate it provided the vertex at distance 4 from u
has no neighbour in zigzag horizontal line L1. If not, saturate the next vertex on C0

n
adjacent to b. Proceed till β0 is reached. Now we saturate the vertex a and the vertices
in C2 which are mirror images of saturated vertices on C1.

The subgraph induced by N [a] when a is a saturated vertex is isomorphic to K1,3.
Now N [a]∩N [u] = φ for all pairs of saturated vertices. The wraparound edge incident
with a together with the two vertices on C0

n adjacent to a, induce K1,3. For n even,

the subgraph H ∼= PY (n − 2) contains (n−1)2+1
2 number of saturated vertices and

C0
n contains 2n − 1 number of saturated vertices. The closed neighbourhoods of these

saturated vertices together cover 4 × [ (n−1)2+1
2 + (2n − 1)] = 2n2 + 4n vertices.

Therefore, the H -packing is perfect and λ = 2n2+4n
4 .
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Fig. 4 a Pyrene torus PT (4), b pyrene torus PT (5)

Fig. 5 1,4-dimethyl
cyclohexane

For n odd, Z ZC(k) contains k + 1 number of saturated vertices, k = 1, 3, 5, . . . , n
and 2n + 1 − k number of saturated vertices, k = n + 2, n + 4, . . . , 2n − 3. The last
zigzag horizontal channel contains a saturated vertex. The closed neighbourhoods of
these saturated vertices together cover 4×[2+4+6+· · ·+(n+1)+(n−1)+(n−3)

+ · · · + 6 + 4] + 4 = [2n2 + 4n] − 2 vertices.
Therefore, λ ≥ � 2n2+4n

4 �. By Theorem 2.2, λ ≤ � 2n2+4n
4 �. Hence, λ =

� 2n2+4n
4 �. 	


The graph in Fig 5 is known as 1,4-dimethyl cyclohexane in chemistry.

Corollary 3.2 If H is isomorphic to 1,4-dimethyl cyclohexane, then there exixts a
perfect H-packing of PT (n) when n is even.

Proof It is clear that the vertex set of each selected H obtained from Theorem 3.1 can
be partitioned into two disjoint sets each inducing a subgraph isomorphic to K1,3. 	

Theorem 3.3 If G is a Pyrene torus, then γ (G) = � 2n2+4n

4 �.

Proof Clearly a pyrene torus PT (n) has a perfect H -packing when n is even and an
H -packing of PT (n) with at most two unsaturated vertices, if n is odd by Theorem 3.1.
Therefore, γ (G) = � 2n2+4n

4 � by Theorem 2.5. 	
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Fig. 6 a Hexabenzocoronene H BC(3), b hexabenzocoronene torus H BCT (3)

Theorem 3.4 If G is a pyrene torus network, then b(G) = 1.

Proof Clearly a pyrene torus PT (n) has a perfect H -packing when n is even and an
H -packing of PT (n) with at most two unsaturated vertices, if n is odd by Theorem 3.1.
Removal of an edge which is adjacent to saturated vertices, increases the domination
number to � 2n2+4n

4 � + 1 if n is even. Removal of an edge which is adjacent to a
and b except the wraparound edge e = (a, b), increases the domination number to
� 2n2+4n

4 � + 1 if n is odd. Hence, b(G) = 1. 	


3.2 Packing of hexabenzocoronene H BC(n) with {K1,3, K1,2}

Hexabenzocoronene (H BC) or hexa-peri-benzocoronene existing in yellow crys-
talline state is noted for its extreme stability. See Fig. 6a. It does not dissolve into
concentrated sulfuric acid, and its melting point could not be determined because the
melting point tube melted long before the hydrocarbon [14].

Hexabenzocoronene H BC(n) is obtained by adding a layer of six hexagons to the
honeycomb network HC(2(n −1)) as shown in Fig. 6a. We call the vertices of degree
2 of these six hexagons as top vertices. The number of vertices and edges of H BC(n)

are 6(n2 + 2n + 4) and 3(3n2 + 5n + 10) respectively.
One of the most widely studied packing is claw-packing [5]. A claw is another

name for the complete bipartite graph K1,3.
Procedure PACKING (H BC(n), {K1,3, K1,2})
Input: A hexabenzocoronene network G of dimension n and F = {K1,3, K1,2}.
Algorithm:
(i) Invoke Procedure PACKING (HC(2(n − 1)), K1,3) [19]
(ii) Select K1,2 induced by the top vertices and two of its adjacent vertices.
End PACKING
Output: An F-packing of H BC(n) with � 6(n2+2n+4)

4 �-4 copies of K1,3 and six copies
of K1,2
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Fig. 7 a Hexabenzocoronene H BC(3), b hexabenzocoronene torus H BCT (3)

Proof of Correctness: The copies of K1,3 and K1,2 selected by the procedure are

disjoint and cover 4 × (� 6(n2+2n+4)
4 � − 4) + 6 × 3 = 6(n2 + 2n + 4) vertices.

Theorem 3.5 If G is a hexabenzocoronene of dimension n, then γ (G) = � 6(n2+2n+4)
4 �

+ 1.

Proof The Procedure PACKING (H BC(n), {K1,3, K1,2}) gives a F-packing of

H BC(n) with � 6(n2+2n+4)
4 �-4 copies of K1,3 and six copies of K1,2. Saturate the

vertex of degree 3 in each K1,3 and the vertex of degree 2 in each K1,2. See Fig. 7a.
The saturated vertices of H BC(n) form a minimum dominating set of G. Therefore,

γ (G) = � 6(n+1)2+18
4 � + 1 = � 6(n2+2n+4)

4 � + 1. 	


3.3 Packing of hexabenzocoronene torus H BCT (n) with K1,3

Hexabenzocoronene torus (H BCT ) is a hypothetical torus-shaped network derived
by properly connecting the nine pairs of peripheral carbon atoms of the hexabenzo-
coronene skeleton; See Fig. 6b. The interesting mathematical properties of the super-
symmetery of H BCT are (a) C6 Rotational symmetry (b) C7 Rotational symmetry
(c) Hamiltonian cycle and Heawood graph. This network is vertex-transitive as well
as edge-transitive. In other words both the topicities of vertex and edge of H BCT are
unity [14].
Procedure PACKING (H BCT (n), K1,3)
Input: A hexabenzocoronene torus network G of dimension n and H ∼= K1,3.
Algorithm:
(i) Invoke Procedure PACKING (HC(2(n − 1)), K1,3) [19]
(ii) Select K1,2 induced by the top vertices and two of its adjacent vertices.
End PACKING
Output: An H -packing of H BCT (n) with at most 10 unsaturated vertices.
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Fig. 8 Balaban 10-cage

Proof of Correctness: The copies of K1,3 selected by the procedure are disjoint and

cover 4 × (� 6(n2+2n+4)
4 � − 2) = 6(n2 + 2n + 4) − 10 vertices.

Theorem 3.6 If G is a hexabenzocoronene torus of dimension n, then � 6(n2+2n+4)
4 � ≤

γ (G) ≤ � 6(n2+2n+4)
4 � + 1.

Proof The K1,3 selected in the algorithm Procedure PACKING (H BCT (n), K1,3) do

not cover 10 vertices. Hence, � 6(n2+2n+4)
4 � ≤ γ (G) ≤ � 6(n2+2n+4)

4 � + 1. 	


3.4 Packing of Balaban 10-cage graph with K1,3

In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3–10)-cage
is a 3-regular graph and a bipartite graph with 70 vertices and 105 edges named after
A. T. Balaban Published in 1972 [2]. It was the first (3–10)-cage discovered but is
not unique. Cages and related graphs have found their applications in chemistry, e.g.
in modelling chemical reactions and degenerate rearrangements [18]. The vertices of
Balaban 10-cage graph are labelled as shown in Fig. 8.
Procedure PACKING (Balaban 10-cage, K1,3 )
Input: A Balaban 10-cage and H ∼= K1,3.
Algorithm:
(i) Select the vertices 3,8,13,18 from the outer layer of Balaban 10-cage.
(ii) Select the vertices 23,26,28,30,33,38,41,45,48 from the middle layer.
(iii) Select the vertices 51,60,61,70 from the inner layer.
End PACKING
Output: An H -packing of Balaban 10-cage with at most two unsaturated vertices.

123



J Math Chem (2015) 53:207–219 217

Proof of Correctness: The subgraph induced by the selected vertices is isomorphic to
K1,3. The copies of K1,3 selected by the procedure are disjoint and cover 4 × (4 +
9 + 4) − 2 = 70 − 2 vertices. Therefore, the packing number λ = � 70

4 � = 17.

Theorem 3.7 If G is a Balaban 10-cage graph, then γ (G) = � 70
4 � = 18.

Proof The Procedure PACKING (Balaban 10-cage, K1,3 ) gives a H -packing with
at most two non adjacent unsaturated vertices. Since a vertex a = 43 dominates the
two non adjacent unsaturated vertices, the saturated vertices and the vertex a form a
minimum dominating set of G. Therefore, γ (G) = � 70

4 � = 18. 	

Theorem 3.8 If G is a Balaban 10-cage graph, then b(G) = 1.

Proof Clearly a Balaban 10-cage graph has a H -packing with at most 2 unsaturated
vertices by the Procedure PACKING (Balaban 10-cage, K1,3 ). Removal of an edge
which is adjacent to a = 43 and b = 28 except an edge e = (a, b), increases the
domination number to 19. Hence, b(G) = 1. 	


4 Domination number of non-isomorphic chemical structures

A nanotube is a tube-like structure having a diameter close to 1 nanometer. Carbon
nanotubes are molecular cylinders that are rapidly extending our ability to fabricate
nanoscale devices by providing molecular probes, pipes, wires, bearings and springs.
They are the strongest and stiffest materials known and thus have many potential
applications in various technologies.

A carbon nanotube is like a cylinder rolled up from a single sheet of graphite, whose
atoms are arranged in hexagons. This type of structure can be used in many applica-
tions to improve the stability, efficiency and reliability of computing. Nanotechnology
creates many new materials and devices with a wide range of applications in medicine,
electronics, and computers. In this section we exhibit a domination number of two non-
isomorphic graphs with same number of vertices namely H -Phenylenic nanotube and
H -Napthelenic nanotube.

H -Phenylenic nanotubes H P H [p, q] are molecular graphs that are covered by C6,
C4 and C8 [1]. In the H -Phenylenic H P H [p, q] nanotube, p represents the number
of hexagons(rows) in each column and q represents the number of hexagons(columns)
in each row. The number of vertices in H -Phenylenic H P H [p, q] nanotube is 6pq.
See Fig. 9a. A H -Naphtalenic Nanotubes are obtained by the sequence C6, C6, C4,
C6 and C6…C6, C6, C4, C6, C6 and the repeat unit C6, C6, C4 [24]. See Fig. 9b.

Theorem 4.1 Let G be a HC6C4C8(p, q) nanotube and q-odd. Then γ (G) =
p(3q + 1)/2.

Proof For each level i where i is odd, start at a vertex a as shown in Fig. 9a and
call it saturated. Traversing through the level i(Li ) vertices choose the next vertex
b at distance 4 from a and saturate it. For each level i where i is even, start at a
vertex a

′
as shown in Fig. 9a and call it saturated. Traversing through the level i(Li )

vertices choose the next vertex b
′

at distance 4 from a
′

and saturate it. Continue the
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Fig. 9 a H -Phenylenic nanotube, b H -napthelenic nanotube

process till all the levels are traversed. By Lemma 2.4, since all the vertices on graph
G are dominated exactly once, the saturated vertices form a minimum dominating set.
Therefore, γ (G) = p(3q + 1)/2. 	


In the view of Theorem 4.1, we have the following result.

Theorem 4.2 Let G be a H-Naphtalenic nanotube. Then G has a minimum dominat-
ing set.

It is easy to see that the H -Phenylenic nanotube and H -Napthelenic nanotube are
non-isomorphic graphs with 90 vertices. But the domination number of each graphs
is same.

Theorem 4.3 Let G be a H-Phenylenic nanotube or H-Naphtalenic nanotube. Then
b(G) = 1.

Proof Clearly all the saturated vertices form a minimum dominating set of G by
Theorem 4.1. Removal of an edge which is adjacent to saturated vertices, increases
the domination number. Therefore, b(G) = 1. 	


5 Concluding remarks

In this paper, we determine the domination number and bondage number of
pyrene torus, hexabenzocoronene, Balaban 10-cage, H -Phenylenic nanotube and H -
Naphtalenic nanotube. The problem of finding the domination number, the total domi-
nation number and the total bondage number of Rectangular twisted torus and various
chemical graphs are under investigation.
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